Схема: впрыск топлива с регулировкой детонационного сгорания

Непосредственный впрыск

Схема двигателя Volkswagen FSI с непосредственным впрыском бензина

Первые системы впрыска бензина непосредственно в цилиндры двигателя появились еще в первой половине ХХ в. и использовались на авиационных двигателях. Попытки применения непосредственного впрыска в бензиновых двигателях автомобилей были прекращены в 40-е годы ХХ в., потому что такие двигатели получались дорогостоящими, неэкономичными и сильно дымили на режимах большой мощности. Впрыскивание бензина непосредственно в цилиндры связано с определенными трудностями. Форсунки для непосредственного впрыска бензина работают в более сложных условиях, чем те, что установлены во впускном трубопроводе. Головка блока, в которую должны устанавливаться такие форсунки, получается более сложной и дорогой. Время, отводимое на процесс смесеобразования при непосредственном впрыске, существенно уменьшается, а значит, для хорошего смесеобразования необходимо подавать бензин под большим давлением.
Со всеми этими трудностями удалось справиться специалистам компании Mitsubishi, которая впервые применила систему непосредственного впрыска бензина на автомобильных двигателях. Первый серийный автомобиль Mitsubishi Galant с двигателем 1,8 GDI (Gasoline Direct Injection — непосредственный впрыск бензина) появился в 1996 г.
Преимущества системы непосредственного впрыска заключаются в основном в улучшении топливной экономичности, а также и некоторого повышения мощности. Первое объясняется способностью двигателя с системой непосредственного впрыска работать на очень бедных смесях. Повышение мощности обусловлено в основном тем, что организация процесса подачи топлива в цилиндры двигателя позволяет повысить степень сжатия до 12,5 (в обычных двигателях, работающих на бензине, редко удается установить степень сжатия свыше 10 из-за наступления детонации).

Форсунка двигателя GDI может работать в двух режимах, обеспечивая мощный (а) или компактный (б) факел распыленного бензина

В двигателе GDI топливный насос обеспечивает давление 5 МПа. Электромагнитная форсунка, установленная в головке блока цилиндров, впрыскивает бензин непосредственно в цилиндр двигателя и может работать в двух режимах. В зависимости от подаваемого электрического сигнала она может впрыскивать топливо или мощным коническим факелом, или компактной струей.

Поршень двигателя с непосредственным впрыском бензина имеет специальную форму (процесс сгорания над поршнем)

Днище поршня имеет специальную форму в виде сферической выемки. Такая форма позволяет закрутить поступающий воздух, направить впрыскиваемое топливо к свече зажигания, установленной по центру камеры сгорания. Впускной трубопровод расположен не сбоку, а вертикально сверху. Он не имеет резких изгибов, и поэтому воздух поступает с высокой скоростью.

В работе двигателя с системой непосредственного впрыска можно выделить три различных режима:
1) режим работы на сверхбедных смесях;
2) режим работы на стехиометрической смеси;
3) режим резких ускорений с малых оборотов;
Первый режим используется в том случае, когда автомобиль движется без резких ускорений со скоростью порядка 100–120 км/ч. На этом режиме используется очень бедная горючая смесь с коэффициентом избытка воздуха более 2,7. В обычных условиях такая смесь не может воспламениться от искры, поэтому форсунка впрыскивает топливо компактным факелом в конце такта сжатия (как в дизеле). Сферическая выемка в поршне направляет струю топлива к электродам свечи зажигания, где высокая концентрация паров бензина обеспечивает возможность воспламенения смеси.
Второй режим используется при движении автомобиля с высокой скоростью и при резких ускорениях, когда необходимо получить высокую мощность. Такой режим движения требует стехиометрического состава смеси. Смесь такого состава легко воспламеняется, но у двигателя GDI повышена степень сжатия, и для того чтобы не наступала детонация, форсунка впрыскивает топливо мощным факелом. Мелко распыленное топливо заполняет цилиндр и, испаряясь, охлаждает поверхности цилиндра, снижая вероятность появления детонации.
Третий режим необходим для получения большого крутящего момента при резком нажатии педали «газа», когда двигатель работает на малых оборотах. Этот режим работы двигателя отличается тем, что в течение одного цикла форсунка срабатывает два раза. Во время такта впуска в цилиндр для его охлаждения мощным факелом впрыскивается сверхбедная смесь (α=4,1). В конце такта сжатия форсунка еще раз впрыскивает топливо, но компактным факелом. При этом смесь в цилиндре обогащается и детонация не наступает.
По сравнению с обычным двигателем с системой питания с распределенным впрыском бензина, двигатель с системой GDI примерно на 10 % экономичнее и выбрасывает в атмосферу на 20 % меньше углекислого газа. Повышение мощности двигателя доходит до 10 %. Однако, как показала эксплуатация автомобилей с двигателями такого типа, они очень чувствительны к содержанию серы в бензине. Оригинальный процесс непосредственного впрыска бензина разработала компания Orbital. В этом процессе в цилиндры двигателя впрыскивается бензин, заранее смешанный с воздухом с помощью специальной форсунки. Форсунка компании Orbital состоит из двух жиклеров, топливного и воздушного.

Работа форсунки Orbital

Воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факелом впрыскивается топливно-воздушная смесь в виде аэрозоля.
Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечивает ее хорошее воспламенение.

Конструктивные особенности двигателя с непосредственным впрыском бензина Audi 2.0 FSI

Система впрыска топлива — схемы и принцип действия

Разные системы и типы впрыска топлива.

Рассмотрим кратко некоторые схемы.

Топливный инжектор — это не что иное, как автоматический контролируемый клапан. Топливные форсунки являются частью механической системы, которая впрыскивает топливо в камеры сгорания через определенный интервал. Топливные инжекторы способны открываться и закрываться много раз в течение одной секунды. В последние годы, использованные ранее для доставки топлива карбюраторы, были практически заменены инжекторами.

  • Дроссельно-заслонный инжектор.

Корпус дроссельной заслонки является самым простым типом впрыска. Как и карбюраторы, дроссельно-заслонный инжектор расположен на верхней части двигателя. Такие инжекторы очень сильно напоминают карбюраторы, кроме их работы. Как и карбюраторы, они не имеют миску топлива или жиклеры. В том виде форсунки передают его непосредственно в камеры сгорания.

  • Система непрерывного впрыска.

Как и предполагает название, существует непрерывный поток топлива из форсунок. Вход его в цилиндры или трубки контролируется с помощью впускных клапанов. Существует непрерывный поток топлива при переменной ставке в непрерывной инъекции.

  • Центральный порт впрыска (ИПЦ).

Эта схема использует особый тип арматуры, так называемые ‘тарелки клапанов’. Тарелками клапанов являются клапаны, используемые для управления входа и выброса топлива к цилиндру. Это распыляет горючее на каждый прием с помощью трубки, прикрепленной к центральному инжектору.

  • Мульти-порт или многоточечный впрыск топлива — схема работы.

Один из более продвинутых схем впрыска топлива в наше время называется ‘многоточечный или мульти-порт впрыска’. Это динамический тип впрыска, в котором содержится отдельная форсунка для каждого цилиндра. В мульти-порт системе впрыска топлива все форсунки распыляют его одновременно без каких-либо задержек. Одновременный многоточечный впрыск — это одна из самых продвинутых механических настроек, которая позволяет горючему в цилиндре мгновенно воспламеняться. Следовательно, с многоточечным впрыском топлива водитель получит быстрый отклик.

Современные схемы впрыска топлива являются довольно сложными компьютеризированными механическими системами, которые сводятся не только к топливным форсункам. Весь процесс контролируется с помощью компьютера. И различные детали реагируют в соответствии с данными инструкциями. Существует ряд датчиков, которые адаптируется с помощью посыла важной информации компьютером. Существуют различные датчики, которые контролируют расход топлива, уровень кислорода и другие.

Хотя эта схема топливной системы более сложная, но работа ее разных частей очень уточненная. Она помогает контролировать уровень кислорода и расход топлива, что поможет избежать ненужного расхода горючего в двигателе. Топливная форсунка дает вашему авто потенциал для выполнения задач с высокой степенью точности.

Для разных топливных систем зачастую приходит необходимость для промывки специальным оборудованием.

Сущность схемы непосредственного впрыска в камеру сгорания

Для человека, который не обладает техническим складом ума, разобраться в данном вопросе – задача чрезвычайно сложная. Но все же знание отличий данной модификации двигателя от инжекторной или карбюраторной необходимо. Впервые двигатели с непосредственным впрыском применялись в модели Mercedes-Benz 1954 года выпуска, но большую популярность данная модификация приобрела благодаря компании Mitsubishi под названием Gasoline Direct Injection.

И с тех пор данная конструкция применяется многими известными брендами, такими как:

При этом каждая из фирм использует свое название для рассматриваемой системы. Но принцип действия остается одним и тем же.

Росту популярности системы впрыска топлива способствуют показатели ее экономичности и экологичности, так как при ее использовании значительно сокращается выброс вредных веществ в атмосферу.

Основные особенности системы впрыска топлива

Основной принцип работы данной системы состоит в том, что топливо непосредственно впрыскивается в цилиндры двигателя. Для работы системы обычно необходимо наличие двух топливных насосов:

  1. первый располагается в баке с бензином,
  2. второй – на двигателе.

Причем второй является насосом высокого давления, иногда выдающим более 100 бар. Это необходимое условие работы, так как топливо поступает в цилиндр на такте сжатия. Высокое давление является основной причиной особого строения форсунок, которые выполняются в виде уплотнительных тефлоновых колец.

Данная топливная система, в отличие от системы с обычным впрыском, является системой с внутренним смесеобразованием с послойным или однородным образованием топливовоздушной массы. Способ смесеобразования изменяется с изменением нагрузки двигателя. Разберемся в работе двигателя при послойном и однородном образовании топливовоздушной смеси.

Работа при послойном образовании топливной смеси

Из-за особенностей строения коллектора (наличия заслонок, которые закрывают низы) перекрывается доступ к низу. На такте впуска воздух поступает в верхнюю часть цилиндра, после некоторого вращения коленчатого вала на такте сжатия происходит впрыск топлива, который и требует большого давления насоса. Далее полученная смесь сносится при помощи воздушного вихря на свечу. В момент подачи искры бензин уже будет хорошо перемешан с воздухом, что способствует качественному сгоранию. При этом воздушная прослойка создает своеобразную оболочку, которая снижает потери и повышает коэффициент полезного действия, тем самым уменьшая расход топлива.

Следует отметить, что работа при послойном впрыске топлива является наиболее перспективным направлением, так как в этом режиме можно достичь наиболее оптимального сгорания топлива.

Однородное образование топливной смеси

В данном случае происходящие процессы понять еще легче. Топливо и необходимый для сгорания воздух почти одновременно попадают в цилиндр двигателя на такте впуска. Еще до достижения поршнем верхней мертвой точки топливовоздушная смесь находится в смешанном состоянии. Образование высококачественной смеси происходит благодаря высокому давлению впрыска. Система переключается с одного режима работы на другой благодаря анализу поступающих данных. Это в результате и приводит к повышению экономичности двигателя.

Основные недостатки впрыска топлива

Все преимущества системы с непосредственным впрыском топлива достигаются только при использовании бензина, качество которого соответствует определенным критериям. В них и следует разобраться. Требования к октановому числу у системы больших особенностей не имеют. Хорошее охлаждение топливовоздушной смеси достигается и при использовании бензинов, имеющих октановые числа от 92 до 95.

Наиболее жесткие требования выдвигаются именно к очистке бензина, его составу, содержанию свинца, серы и грязи. Серы быть вообще не должно, так как ее наличие приведет к скорому износу топливной аппаратуры и выходу из строя электроники. К числу недостатков также следует отнести увеличение стоимости системы. Это вызвано усложнением конструкции, которое в свою очередь приводит к увеличению себестоимости компонентов.

Итоги

Анализируя вышеприведенную информацию, можно с уверенностью сказать, что система с непосредственным впрыском топлива в камеру сгорания является более перспективной и современной, чем впрыск с распределением. Она позволяет существенно повышать экономичность двигателя за счет высокого качества топливовоздушной смеси. Основным недостатком системы является наличие высоких требований к качеству бензина, большая стоимость ремонта и обслуживания. А при использовании бензина низкого качества потребность в более частом ремонте и обслуживании сильно возрастает.

Системы впрыска топлива бензиновых двигателей

Современные автомобили оснащают разными системами с впрыском топлива. В двигателях, работающих на бензине, смесь топлива и воздуха принудительно возгорается с помощью искры.

Система с впрыском топлива является неотъемлемым элементом топливной системы автомобиля. Форсунка является главным рабочим элементом любой системы впрыска.

Бензиновые двигателя оснащаются системами с впрыском, которые различаются между собой способом образования смеси топлива с воздухом:

  • системы с центральным впрыском;
  • системы с распределенным впрыском;
  • системы с непосредственным впрыском.

Центральный впрыск, или иначе его называют моновпрыск (Monojetronic), осуществляется одной центральной электромагнитной форсункой, которая впрыскивает топливо во впускной коллектор. Это чем-то напоминает карбюратор. Сейчас автомобили с такой системой впрыска не производятся, так как у автомобиля с такой системой наблюдается высокий расход топлива и невысокие экологические свойства автомобиля.

Система распределенного впрыска постоянно с годами совершенствовалась. Начало положила система K-jetronic. Впрыск был механическим, что давало ему хорошую надежность, но расход топлива был весьма высоким. Топливо додавалось не импульсно, а постоянно. На смену данной системы пришла система KE-jetronic.

Она ни чем принципиально не отличалась от K-jetronic, но появился электронный блок управления (ЭБУ), который позволил незначительно сократить расход топлива. Но и эта система не принесла ожидаемых результатов. Появилась система L-jetronic.

В которой ЭБУ воспринимал сигналы от датчиков и направлял электромагнитный импульс на каждую форсунку. Система обладала хорошими экономическими и экологическими показателями, но конструктора не стали на этом останавливаться, и разработали совершенно новую систему Motronic.

Блок управления стал управлять и впрыском топлива, и системой зажигания. Топливо стало лучше сгорать в цилиндре, увеличилась мощность двигателя, уменьшился расход и вредные выбросы автомобиля. Во всех этих системах представленных выше впрыск осуществляется отдельной форсункой на каждый цилиндр во впускной коллектор, где и происходит образование смеси топлива с воздухом, которая попадает в цилиндр.

Наиболее перспективной системой на сегодняшний день является система с непосредственным впрыском.

Суть данной системы заключается в том, что топливо впрыскивается сразу в камеру сгорания каждого цилиндра, и уже там смешивается с воздухом. Система определяет и подает оптимальный состав смеси в цилиндр, что обеспечивает хорошую мощность на различных режимах работы двигателя, хорошую экономичность и высокие экологические свойства двигателя.

Но с другой стороны, двигателя с данной системой впрыска обладают более высокой ценой по сравнению со своими предшественниками, из-за сложности своей конструкции. Так же данная система очень требовательна к качеству топлива.

Принцип функционирования систем впрыска топлива бензиновых двигателей

Еще на заре автомобилестроения при конструировании двигателей внутреннего сгорания была выявлена зависимость эффективности сгорания и, ее соответственно, отдачи внутренней энергии рабочей смеси от пропорции топлива и воздуха в ее составе. Для максимально эффективного функционирования необходима строго определённая пропорция, которая должна сохраняться на всех режимах работы двигателя. Это, в свою очередь, ведет экономии топлива. Особенно важно поддерживание данной пропорции для бензиновых двига телей. На сегодняшний день все бензиновые двигатели ведущих производителей автомобильной техники оборудованы системой инжекторного впрыска с электронным управлением При данном способе смесеобразования необходимый для сгорания топлива воздух поступает через воздушный фильтр и через дроссельную заслонку во впускной трубопровод. Количество поступающего воздуха определяется соответствующим датчиком. Топливо засасывается из топливного бака электронасосом, пропускается через топливный фильтр и подается топливораспределительную магистраль. Через инжекторы топливо впрscкивается во впускной трубопровод, раcположенный перед впускными клапанами цилиндров, где смешивается воздушным потоком.

Замечание: в двигателе Z22YH впрыск осуществляется непосредственно в камеру сгорания.

Модуль управления двигателем,соблюдая последовательность зажигания регулирует время открывания каналов инжекторов и тем самым количество впрыскиваемого топлива. Кроме того ЕСМ осуществляет управление дроссельной заслонкой, регулируя количество подаваемого воздуха. Первоначально для определения кол.ичества подаваемого в цилиндры двигателя топлива производились измерения только входящего воздушного потока. Но постепенно были выявлены новые зависимости, влияющие на эффективность сгорания топлива, а также ужесточились требования к токсичности отработавших газов, что повлек. ло за собой и усложнение систем управления двигателем. Современные системы управлениявпрыском топлива представляют собой. сложный комплекс датчиков, блоков управления, исполнительных устройств и электронных схем (см. рисунок 12.1).

Ниже приведено описание принципов действия некоторых из них:

• Датчик положения педали газа вмонтирован в педальную сборку. От датчика на модуль управления двигателем (ЕСМ) поступает соответствующий электрический сигнал, задавая зчачения требуемого режима движения автомобиля;

• В модуле управления дроссельной заслонкой находятся исполнительный элемент (шаговый электромотор) и потенциометр заслонки. Электромотор регулирует положение дроссельной заслонки и позволяет поддерживать постоянное число оборотов холостого хода независимо от подкпючен ия дополнительных потребителей. посредством потенциометра на ЕСМ поступает информация о текущем значении угла установки дроссельной заслонки;

• От датчика положения распределительных валов на ЕСМ поступает информация о моменте зажигания в первом цилиндре двигателя для синхронизации моментов зажигания и последовательности впрыска в других цилиндрах;

• В корпусе датчика измерения массы воздуха установлена тонкая сенсорная пластина, через которую пропускается электрический ток. За счет проходящего воздушного потока пластина охлаждается. Блок управлен ия регулирует ток нагрева так, чтобы температура пластины оставалась постоянной. Отклонения силы тока при нагреве позволяют ЕСМ определить постояние нагрузки двигателя и в соответствии с этим регулировать количество впрыскиваемого топлива.

• Датчик измерения температуры охлаждающей жидкости установлен в корпусе термостата . Он представляет собой NTC-резистор — с повышением температуры охлаждающей жидкости его сопротивление уменьшается и соответствующий сигнал поступает на ЕСМ;

• Датчик детонации закреплен под выпускным коллектором в блоке цилиндров. Он устанавливает момент зажигания на границе начала детонационного горения топлива, тем самым с одной стороны препятствуя процессу детонационного сгорания топливной смеси, а с другой стороны обеспечивая наиболее полное сгорание топлива и снижая его расход. —

Различные системы могут отличаться друг от друга количеством задействованных элементов в зависимости от конструкции силового агрегата и требований, предъявляемым к конкретному двигателю. Самостоятельное вмешательство в регулировку и настройку данных систем не допустимо. Для этого используются специальные приборы диагностики и настройки, которые доступны, как правило, лишь на специализированных сервисных станциях.

Как работает инжектор и система впрыска топлива?

Карбюратор был гениальным изобретением сам по себе. Двигатель автомобиля имеет 4 цикла, и один из них называется циклом всасывания. Если Вы читали нашу статью о том, как работает двигатель внутреннего сгорания, то Вы понимаете, о чём идёт речь. Проще говоря, двигатель засасывает (создавая существенный вакуум внутри цилиндра), и когда это происходит, карбюратор приходил на помощь, чтобы подать нужное количество бензина и воздуха в двигатель. Несмотря на всю легендарность системы, она не была лишена недостатков, ей не хватало точности количества подаваемого бензина, его необходимо было постоянно регулировать, чего не требуется современной системе впрыска топлива под давлением. Вы можете более подробно ознакомиться с принципом работы карбюратора.

В случае с системой впрыска топлива Ваш двигатель все ещё ​сосёт, но вместо того, чтобы полагаться только на всасываемое количество топлива, система впрыска топлива стреляет точно правильное количество топлива в камеру сгорания. Системы впрыска топлива прошли уже несколько ступеней эволюции, в них была добавлена электроника — это, пожалуй, было самым большим шагом в развитии этой системы. Но идея таких систем осталась та же: электрически активируемый клапан (инжектор) распыляет отмеренное количество топлива в двигатель. На самом деле основное различие между карбюратором и инжектором именно в электронном управлении ЭБУ — именно бортовой компьютер подаёт точно нужное количество топлива в камеру сгорания двигателя.

Давайте посмотрим, как работает система впрыска топлива и инжектор в частности.

Так выглядит система впрыска топлива

Если сердце автомобиля — это его двигатель, то его мозг — это блок управления двигателем (ЭБУ). Он оптимизирует работу двигателя с помощью датчиков, чтобы решить, как управлять некоторыми приводами в двигателе. Прежде всего, компьютер отвечает за 4 основные задачи:

  1. управляет топливной смесью,
  2. контролирует обороты холостого хода,
  3. несёт ответственность за угол опережения зажигания,
  4. управляет фазами газораспределения.

Прежде чем мы поговорим о том, как ЭБУ осуществляет свои задачи, давайте о самом главном — проследим путь бензина от бензобака до двигателя — это и есть работа системы впрыска топлива. Первоначально после того, как капля бензина покидает стенки бензобака, она всасывается с помощью электрического топливного насоса в двигатель. Электрический топливный насос, как правило, состоит из непосредственно насоса, а также фильтра и передающего устройства.

Регулятор давления топлива в конце топливной направляющей с вакуумным питанием гарантирует, что давление топлива будет постоянным по отношению к давлению всасывания. Для бензинового двигателя давление топлива, как правило, составляет порядка 2-3,5 атмосферы (200-350 кПа, 35-50 PSI (фунтов на квадратный дюйм)). Топливные форсунки инжектора подключены к двигателю, но их клапаны остаются закрытыми до тех пор, пока ЭБУ не разрешит отправить топливо в цилиндры.

Но что же происходит, когда двигателю требуется топливо? Здесь в работу вступает инжектор. Обычно инжекторы имеют два контакта: один вывод подключен к аккумулятору через реле зажигания, а другой контакт проходит в ЭБУ. ЭБУ посылает пульсирующие сигналы в инжектор. За счёт магнита, на который и подаются такие пульсирующие сигналы, открывается клапан инжектора, и в его сопло подаётся некоторое количество топлива. Поскольку в инжекторе очень высокое давление (значение приведено выше), открывшийся клапан направляет топливо с высокой скоростью в сопло распылителя инжектора. Продолжительность, с которой открыт клапан инжектора, влияет на то, какое количество топлива подаётся в цилиндр, а продолжительность эта, соответственно зависит от ширины импульса (т.е. от того, сколько времени ЭБУ посылает сигнал к инжектору).

Когда клапан открывается, топливная форсунка передаёт топливо через распылительный наконечник, который, распыляя, превращает жидкое топливо в туман, непосредственно в цилиндр. Такая система называется системой с непосредственным впрыском. Но распылённое топливо может подаваться не сразу в цилиндры, а сначала в впускные коллекторы.

Как работает инжектор

Но как ЭБУ определяет, сколько на данный момент топлива нужно подать в двигатель? Когда водитель нажимает педаль акселератора, то на самом деле он открывает дроссельную заслонку на величину нажима педали, через которую в двигатель подаётся воздух. Таким образом, мы с уверенностью можем назвать педаль газа «регулятором подачи воздуха» в двигатель. Так вот, компьютер автомобиля руководствуется в том числе величиной открытия дроссельной заслонки, но не ограничивается этим показателем — он считывает информацию с множества датчиков, и давайте узнаем о них всех!

Датчик массового расхода воздуха

Перво-наперво датчик массового расхода воздуха (MAF) определяет, сколько воздуха входит в корпус дроссельной заслонки и посылает эту информацию в ЭБУ. ЭБУ использует эту информацию, чтобы решить, сколько топлива впрыснуть в цилиндры, чтобы держать смесь в идеальных пропорциях.

Датчик положения дроссельной заслонки

Компьютер постоянно использует этот датчик, чтобы проверить положение дроссельной заслонки и узнать таким образом, сколько воздуха проходит через воздухозаборник для того, чтобы регулировать импульс, отправленный к форсункам, гарантируя, что соответствующее воздуху количество топлива входит в систему.

Кислородный датчик

Кроме того, ЭБУ использует датчик O2, чтобы выяснить, сколько кислорода содержится в выхлопных газах автомобиля. Содержание кислорода в выхлопных газах обеспечивает индикацию того, насколько хорошо топливо сгорает. Используя связанные данные от двух датчиков: кислородного и массового расхода воздуха, ЭБУ также контролирует насыщенность топливо-воздушной смеси, подаваемой в камеру сгорания цилиндров двигателя.

Датчик положения коленвала

Это, пожалуй, главный датчик системы впрыска топлива — именно от него ЭБУ узнаёт о количестве оборотов двигателя в данный момент времени и корректирует количество подаваемого топлива в зависимости от числа оборотов и, конечно же, положения педали газа.

Это три основных датчика, которые прямо и динамически влияют на количество подаваемого в инжектор и в последующем в двигатель топлива. Но есть ещё ряд датчиков:

  • Датчик напряжения в электрической сети машины — нужен для того, чтобы ЭБУ понимал, насколько разряжен аккумулятор и требуется ли повысить обороты, чтобы зарядить его.
  • Датчик температуры охлаждающей жидкости — ЭБУ повышает количество оборотов, если двигатель холодный и наоборот, если двигатель прогрелся.

Как работает распределенный и послойный впрыск топлива?

Специальная система, подающая в цилиндры двигателя топливную жидкость, называется распределенный впрыск топлива. Компонент устанавливается на все автомобили без исключения, она может носить следующий характер:

  • Механический;
  • Распределенный;
  • Непосредственный;
  • Моновпрыск.

Наиболее распространенной моделью этой системы является послойный впрыск топлива, который позволяет подавать топливную жидкость отдельно для каждого цилиндра. Эта подача осуществляется с помощью специальных распределительных форсунок.

Система распределенного впрыска топлива

Что значит последовательность впрыска

Последовательность или фазы впрыска топлива обусловлена следующими показателями:

  • За один отработанный цикл двигателя каждая специальная форсунка отрабатывает одну фазу впрыска;
  • Время этой фазы для каждой модели автомобиля может быть разным, но при этом количество топлива в большинстве случаев одинакова.

Распределенный впрыск топлива внедряется не на каждый автомобиль, поскольку он отличается тем, что подходит только для инжекторных автомобилей. Автовладельцы, которые сталкиваются с этой системой, отмечают, что она позволяет достичь до 15 % экономии топлива.

Как работает система

Чтобы было понятно, как работает комплекс впрыска, следует рассмотреть ее подробно. Если сказать коротко, то система работает следующим образом:

  • Для двигателя подается смесь из топлива и воздуха;
  • Подача воздуха контролируется с помощью дроссельной заслонкой;
  • Прежде чем попасть в двигатель воздух распределяется на четыре потока;
  • Потом потоки накапливаются в специальном ресивере;
  • Кроме накопления ресивер применяется также для измерения количества воздуха;

Ресивер на двигатель устанавливается такого размера, чтобы предупредить воздушное голодание цилиндров, то есть, чтобы система обладала, все время достаточным количеством воздуха для работы. Для того чтобы впрыск воздушно-топливной осуществлялся качественно и бесперебойно на компонент установлены специальные форсунки, они располагаются поблизости от впускных клапанов.

Система распределенного впрыска топлива

Из каких механизмов состоит система

Следует перечислить, из каких исполнительных механизмов состоит комплекс впрыска топлива инжекторного автомобиля:

Бензонасос работает на нагнетание топливной смеси в специальную рампу. Чтобы давление в этой рампе было все время на определенном уровне на ней установлен механический регулятор давления. Иногда бензонасос и регулятор совмещены.

Форсунки специальные клапаны с регулируемой производительностью, которые имеют электромагнитные прецензионный характер.

Зажигательный модуль специальное устройство, предназначенное для регуляции искрообразования. Включает в себя два независимо работающих канала, которые направлены на поджиг смеси, отдельно в 1 и 4, а также во 2 и 3 цилиндрах.

Клапан предохранения – направлен на защиту всех элементов системы от впрыска повышенного давления. Давление впрыска повышается от температурного расширения топлива, сам клапан устанавливается на рампе.

Регулирование холостого хода эта часть системы обусловлено специальным регулятором, который поддерживает заданные обороты. Сам регулятор представляет собой двигатель шагового типа, он регулирует канал воздуха обводного типа в дроссельную заслонку. Это необходимо для того чтобы двигатель постоянно получал необходимое количество воздуха.

Вентилятор системного охлаждения имеет управление от электрической составляющей автомобиля и работает в зависимости от сигналов ДТОЖ.

Датчик топливного расхода подает постоянный сигнал на маршрутный компьютер или на панель управления и сообщает водителю необходимые показатели. Надо отметить, что этот датчик может работать с погрешностями, так как данный высчитываются по приблизительным показателям.

Адсорбер еще один компонент замкнутой цепи, которая регулирует пары бензина. Чаще всего такой элемент устанавливается на зарубежные автомобиля.

Схема распределенного впрыска топлива

Управление системой

Система впрыска регулируется электронным блоком управления, которые представляет собой специальный компьютер. В нем происходить определенный алгоритм обработки данных, которые показывают датчики системы. Для качественной работы этого блока необходимы следующие показатели:

  • Качественно и исправно работающие датчики;
  • Отрегулированная подача данных;
  • Отсутствие неполадок в прошивке блока.

Как происходит послойное смесеобразование

Во время работы послойного типа дроссельная заслонка системы практически открыта полностью, при этом заслонки впуска закрыты полностью. Поступление воздуха в камеры сгорания происходит на большой скорости, при этом образуется воздушный вихрь. Топливо при этом впрыскивается в зону свечей сгорания, на последнем этапе такта сжатия. Когда топливновоздушная смесь воспламеняется, вокруг нее образуется теплоизоляция из чистого воздуха.

Система непосредственного впрыска топлива в бензиновых двигателях: принцип работы

Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.

По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.

Читайте в этой статье

Прямой впрыск топлива: устройство системы непосредственного впрыска

Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.

Например, концерн VAG представил ряд моделей Audi и Volkswagen с атмосферными и турбированными бензиновыми двигателям TFSI, FSI и TSI, которые получили непосредственный впрыск топлива. Также двигатели с прямым впрыском производит компания BMW, Ford, GM, Mercedes и многие другие.

Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.

Система непосредственного впрыска: конструктивные особенности

Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:

  • контур высокого давления;
  • бензиновый ТНВД;
  • регулятор давления;
  • топливную рампу;
  • датчик высокого давления;
  • инжекторные форсунки;

Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.

Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.

Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.

Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.

Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.

Как работает система непосредственного впрыска топлива

Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.

  • Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
  • Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
  • Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.

За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».

В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.

Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.

Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.

Что в итоге

Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.

Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.

Устройство и схема работы инжектора. Плюсы и минусы инжектора по сравнению с карбюратором. Часты неисправности инжекторных систем питания. Полезные советы.

Тюнинг топливной системы атмосферного и турбо двигателя. Производительность и энергопотребление бензонасоса, выбор топливных форсунок, регуляторы давления.

Установка карбюратора вместо инжектора, особенности процесса замены системы впрыска. Замена карбюратора на инжекторный электронный впрыск. Рекомендации.

Что такое моноинжектор: главные отличия и особенности одноточечной системы впрыска топлива. Как проверить и самостоятельно настроить моновпрыск .

Устройство и схема работы системы питания дизельного двигателя. Особенности топлива и его подачи , основные компоненты системы питания, турбодизельный ДВС.

Конструкция дизельного топливного насоса высокого давления, потенциальные неисправности, схема и принцип работы на примере устройства системы топливоподачи.

РАБОТА СИСТЕМЫ ВПРЫСКА ТОПЛИВА

РАБОТА СИСТЕМЫ ВПРЫСКА ТОПЛИВА

Количество топлива, подаваемого форсунками, регулируется электрическим импульсным сигналом от ЭБУ. Он отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность импульса – скважность). Для

увеличения количества подаваемого топлива ЭБУ увеличивает длительность импульса, а для уменьшения подачи топлива – сокращает.

ЭБУ обладает способностью оценивать результаты своих расчетов и команд, запоминать режимы недавней работы и действовать в соответствии с ними. «Самообучение» или адаптация ЭБУ является непрерывным процессом, но соответствующие настройки сохраняются в оперативной памяти электронного блока и соответственно до первого отключения питания ЭБУ.

Топливо подается по одному из двух разных методов: синхронному, т.е. при определенном положении коленчатого вала, или асинхронному, т.е. независимо или без синхронизации с вращением коленчатого вала. Синхронный впрыск топлива – наиболее часто применяемый метод. Асинхронный впрыск топлива применяется в основном в режиме пуска двигателя. ЭБУ включает форсунки последовательно.

Каждая из форсунок включается через каждые 720° поворота коленчатого вала. Такой метод позволяет более точно дозировать топливо по цилиндрам и понизить уровень токсичности отработавших газов.

Количество подаваемого топлива определяется состоянием двигателя, т.е. режимом его работы. Эти режимы обеспечиваются ЭБУ и описаны ниже.

Когда коленчатый вал двигателя начинает прокручиваться стартером, первый импульс от датчика положения коленчатого вала вызывает импульс от ЭБУ на включение сразу всех форсунок, что позволяет ускорить пуск двигателя.

Первоначальный впрыск топлива происходит каждый раз при пуске двигателя. Длительность импульса впрыска зависит от температуры. На холодном двигателе импульс впрыска увеличивается для увеличения количества топлива, на прогретом – длительность импульса уменьшается. После первоначального впрыска ЭБУ переключается на соответствующий режим управления форсунками.

Режим пуска. При включении зажигания ЭБУ включает реле электробензонасоса, который создает давление в магистрали подачи топлива к топливной рампе.

ЭБУ проверяет сигнал от датчика температуры охлаждающей жидкости и определяет необходмое для пуска количество топлива и воздуха.

Когда коленчатый вал двигателя начинает проворачиваться, ЭБУ формирует фазированный импульс включения форсунок, длительность которого зависит от сигналов датчика температуры охлаждающей жидкости.

На холодном двигателе длительность импульса больше (для увеличения количества подаваемого топлива), а на прогретом – меньше.

Режим обогащения при ускорении. ЭБУ следит за резкими изменениями положения дроссельной заслонки (по сигналу датчика положения дроссельной заслонки), а также за сигналом датчика массового расхода воздуха и обеспечивает подачу дополнительного количества топлива засчет увеличения длительности импульса впрыска. Режим обогащения при ускорении применяется только для управления топливоподачей в переходных условиях (при перемещении дроссельной заслонки).

Режим отключения подачи топлива при торможении двигателем. При торможении двигателем с включенной передачей и сцеплением ЭБУ может на короткие периоды времени полностью отключить импульсы впрыска топлива. Отключение и включение подачи топлива в этом режиме происходит при создании определенных условий по температуре охлаждающей жидкости, частоте вращения коленчатого вала, скорости автомобиля и углу открытия дроссельной заслонки.

Компенсация напряжения питания. При падении напряжения питания система зажигания может давать слабую искру, а механическое движение «открытия» форсунки может занимать больше времени. ЭБУ компенсирует это путем увеличения времени накопления энергии в катушках зажигания и длительности импульса впрыска.

Соответственно при увеличении напряжения аккумуляторной батареи (или напряжения в бортовой сети автомобиля) ЭБУ уменьшает время накопления энергии в катушках зажигания и длительность впрыска.

Режим отключения подачи топлива. При остановке двигателя (выключенном зажигании) топливо форсункой не подается, вследствие чего исключается самопроизвольное воспламенение смеси в перегретом двигателе. Кроме того, импульсы на открытие форсунок не подаются в случае, если ЭБУ не получает опорные импульсы от датчика положения коленчатого вала, т.е. это означает, что двигатель не работает.

Отключение подачи топлива происходит и при превышении предельно допустимой частоты вращения коленчатого вала двигателя для защиты двигателя от работы на недопустимо высоких оборотах.

Системы впрыска бензиновых двигателей

Двигатели с системами впрыска топлива, или инжекторные двигатели, почти вытеснили с рынка карбюраторные моторы. На сегодняшний день существует несколько типов систем впрыска, отличающихся устройством и принципом работы. О том, как устроены и работают различные типы и виды систем впрыска топлива, читайте в этой статье.

Устройство, принцип работы и типы систем впрыска топлива

Сегодня большинство новых легковых автомобилей оснащаются двигателям с системой впрыска топлива (инжекторными двигателями), которые обладают лучшими характеристиками и более надежны, чем традиционные карбюраторные моторы. Об инжекторных двигателях мы уже писали (статья «Инжекторный двигатель»), поэтому здесь рассмотрим лишь типы и разновидности систем впрыска топлива.

Существует два принципиально разных типа систем впрыска топлива:

— Центральный впрыск (или моновпрыск);
— Распределенный впрыск (или многоточечный впрыск).

Эти системы отличаются количеством форсунок и режимами их работы, однако принцип работы у них одинаков. В инжекторном двигателе вместо карбюратора установлена одна или несколько топливных форсунок, которые распыляют бензин во впускной коллектор или непосредственно в цилиндры (воздух для образования топливно-воздушной смеси подается в коллектор с помощью дроссельного узла). Такое решение позволяет достичь однородности и высокого качества горючей смеси, а главное — несложной установки режима работы двигателя в зависимости от нагрузки и других условий.

Управление системой осуществляется специальным электронным блоком (микроконтроллером), который собирает информацию с нескольких датчиков и мгновенно изменяет режим работы двигателя. В ранних системах эту функцию выполняли механические устройства, однако сегодня двигатель полностью находится под контролем электроники.

Системы впрыска топлива отличаются по количеству, месту установки и режиму работы форсунок.

Центральный впрыск (моновпрыск)

1 — цилиндры двигателя;
2 — впускной трубопровод;
3 — дроссельная заслонка;
4 — подача топлива;
5 — электрический провод, по которому к форсунке поступает управляющий сигнал;
6 — поток воздуха;
7 — электромагнитная форсунка;
8 — факел топлива;
9 — горючая смесь

Это решение было исторически первым и самым простым, поэтому в свое время получило довольно широкое распространение. Принципиально система очень проста: в ней используется одна форсунка, которая постоянно распыляет бензин в один на все цилиндры впускной коллектор. В коллектор же подается и воздух, поэтому здесь образуется топливно-воздушная смесь, которая через впускные клапаны поступает в цилиндры.

Преимущества моновпрыска очевидны: эта система очень проста, для изменения режима работы двигателя нужно управлять только одной форсункой, да и сам двигатель претерпевает незначительные изменения, ведь форсунка ставится на место карбюратора.

Однако моновпрыск имеет и недостатки, в первую очередь — эта система не может обеспечить все возрастающие требования по экологической безопасности. Кроме того, поломка одной форсунки фактически выводит двигатель из строя. Поэтому сегодня двигатели с центральным впрыском практически не выпускаются.

Распределенный впрыск

1 — цилиндры двигателя;
2 — факел топлива;
3 — электрический провод;
4 — подача топлива;
5 — впускной трубопровод;
6 — дроссельная заслонка;
7 — поток воздуха;
8 — топливная рампа;
9 — электромагнитная форсунка

В системах с распределенным впрыском используются форсунки по числу цилиндров, то есть у каждого цилиндра — своя форсунка, расположенная во впускном коллекторе. Все форсунки объединены топливной рампой, через которую в них подается топливо.

Существует несколько разновидностей систем с распределенным впрыском, которые отличаются режимом работы форсунок:

— Одновременный впрыск;
— Попарно-параллельный впрыск;
— Фазированный спрыск.

Одновременный впрыск. Здесь все просто — форсунки, хоть и расположены во впускном коллекторе «своего» цилиндра, но открываются в одно время. Можно сказать, что это усовершенствованный вариант моновпрыска, так как здесь работает несколько форсунок, но электронный блок управляет ими, как одной. Однако одновременный впрыск дает возможность индивидуальной регулировки впрыска топлива для каждого цилиндра. В целом, системы с одновременным впрыском просты и надежны в работе, но по характеристикам уступают более современным системам.

Попарно-параллельный впрыск. Это усовершенствованный вариант одновременного впрыска, он отличается тем, что форсунки открываются по очереди парами. Обычно работа форсунок настроена таким образом, чтобы одна из них открывалась перед тактом впуска своего цилиндра, а вторая — перед тактом выпуска. На сегодняшний день этот тип системы впрыска практически не используется, однако на современных двигателях предусмотрена аварийная работа двигателя именно в этом режиме. Обычно такое решение используется при выходе из строя датчиков фаз (датчиков положения распредвала), при котором невозможен фазированный впрыск.

Фазированный впрыск. Это наиболее современный и обеспечивающий наилучшие характеристики тип системы впрыска. При фазированном впрыске число форсунок равно числу цилиндров, и все они открываются и закрываются в зависимости от такта. Обычно форсунка открывается непосредственно перед тактом впуска — так достигаются лучший режим работы двигателя и экономичность.

Также к распределенному впрыску относят системы с непосредственным впрыском, однако последний имеет кардинальные конструктивные отличия, поэтому его можно выделить в отдельный тип.

Непосредственный впрыск

Системы с непосредственным впрыском наиболее сложные и дорогие, однако только они могут обеспечить наилучшие показатели по мощности и экономичности. Также непосредственный впрыск дает возможность быстро изменять режим работы двигателя, максимально точно регулировать подачу топлива в каждый цилиндр и т.д.

В системах с непосредственным впрыском топлива форсунки установлены непосредственно в головке, распыляя топливо сразу в цилиндр, избегая «посредников» в виде впускного коллектора и впускного клапана (или клапанов).

Такое решение довольно сложно в техническом плане, так как в головке цилиндра, где и так уже расположены клапаны и свеча, необходимо разместить еще и форсунку. Поэтому непосредственный впрыск можно использовать только в достаточно мощных, а поэтому больших по габаритам двигателях. Кроме того, такую систему невозможно установить на серийный двигатель — его приходится модернизировать, что связано с большими затратами. Поэтому непосредственный впрыск сегодня используется только на дорогих автомобилях.

Системы с непосредственным впрыском требовательны к качеству топлива и нуждаются в более частом техническом обслуживании, однако они дают существенную экономию топлива и обеспечивают более надежную и качественную работу двигателя. Сейчас наблюдается тенденция снижения цены машин с такими двигателями, поэтому в будущем они могут серьезно потеснить автомобили с инжекторными двигателями других систем.

Устройство автомобилей

Системы питания инжекторных двигателей

Распределенный впрыск топлива

В настоящее время система распределенного впрыска топлива ( Рис. 1 ) является наиболее распространенной на автомобильных двигателях.
Бензин из бака 22 подается электрическим насосом 1 через фильтр 3 тонкой очистки в рампу 4 форсунок.

Рампа форсунок ( Рис. 2 ) одновременно является топливной магистралью, в которой поддерживается избыточное давление топлива с помощью регулятора давления 5.
Таким образом, электромагнитные форсунки, постоянно находящиеся под давлением, впрыскивают топливо в зону впускных клапанов по сигналу электронного блокауправления (ЭБУ).

Избыток топлива регулятор 5 ( см. рис. 1 ) возвращает обратно в бак.
При использовании двух впускных клапанов на цилиндр форсунка впрыскивает топливо на перемычку между клапанами.

Воздух в цилиндры поступает через воздухоочиститель, измеритель 8 расхода воздуха и впускной трубопровод (ресивер) 12, а его количество регулируется дроссельной заслонкой, управляемой водителем.

От измерителя 8 расхода воздуха и датчика 13 частоты вращения коленчатого вала сигналы поступают в электронный блок управления (ЭБУ). После обработки этих сигналов и получения значения циклового расхода воздуха по заданному алгоритму в соответствии с режимом работы двигателя ЭБУ выдает управляющие импульсы необходимой длительности для открытия клапанов форсунок, обеспечивая тем самым необходимую подачу топлива.
Подача топлива корректируется блоком управления в зависимости от положения и скорости поворота дроссельной заслонки на основании сигналов от датчика 7, а также температуры охлаждающей жидкости на основании сигналов от датчика 14.

На режимах принудительного холостого хода при закрытой дроссельной заслонке (в датчике 7 срабатывает соответствующая контактная пара) и частоте вращения коленчатого вала более 1500 об/мин подача топлива отключается и возобновляется при частоте вращения коленчатого вала ниже 900 об/мин.

На холостом ходу для обеспечения устойчивой работы двигателя с заданной частотой вращения коленчатого вала предусмотрено, в зависимости от температуры охлаждающей жидкости, автоматическое регулирование количества воздуха, поступающего в двигатель.

У непрогретого двигателя на холостом ходу при незакрытой дроссельной заслонке воздух поступает через верхний и нижний каналы регулятора 11 дополнительной подачи воздуха. По мере прогрева двигателя, начиная с температуры охлаждающей жидкости 50…70 ˚С, регулятор прекращает подачу воздуха, и он поступает только через верхний канал, сечение которого изменяется винтом регулирования частоты вращения коленчатого вала на холостом ходу.

Рампа 4 форсунок ( см. рис. 2 ) представляет собой полую планку с установленными на ней форсунками 2 и регулятором 5 давления топлива, который связан с ресивером и топливным баком.
Рампа закрепляется на головке блока цилиндров или впускном трубопроводе. В конец рампы ввернут штуцер 3 для подвода топлива от насоса. Нижним концом форсунки закрепляются во впускном трубопроводе (коллекторе).

Регулятор давления топлива ( Рис. 3 ) поддерживает давление 0,38…0,33 МПа в рампе и форсунках работающего двигателя. Регулятор давления состоит из корпуса 1, крышки 3, между которыми закреплена мембрана 4 с клапаном 2.
Внутренняя полость регулятора делится мембраной на две части: вакуумную и топливную.

Вакуумная полость находится в крышке 3 регулятора и связана с ресивером, а топливная полость – в корпусе 1 регулятора и связана с топливным баком.

При закрытии дроссельной заслонки разрежение в ресивере 12 ( см. рис. 1 ) увеличивается, клапан регулятора открывается при меньшем давлении топлива и перепускает избыточное топливо по сливному топливопроводу в топливный бак 2. При этом давление топлива в рампе 4 понижается.
При открытии дроссельной заслонки разрежение в ресивере уменьшается, клапан регулятора открывается уже при большем давлении топлива.
В результате давление топлива в рампе повышается.

Электромагнитная форсунка ( Рис. 4 ) представляет собой электромагнитный клапан. Она предназначена для впрыска дозированного количества топлива во впускной трубопровод и устанавливается вблизи впускного клапана (или впускных клапанов) цилиндра двигателя. Дозирование топлива осуществляется изменением времени открывания клапана форсунки, и зависит от длительности электрического импульса, поступающего от ЭБУ в обмотку катушки электромагнита форсунки.

Форсунка состоит из корпуса 3, крышки 6, обмотки катушки 4 электромагнита, иглы 2 запорного клапана, корпуса 9 распылителя, насадки 1 распылителя и фильтра 5.
При работе двигателя топливо под давлением поступает в форсунку через фильтр 5 и проходит к запорному клапану, который находится в закрытом положении под действием пружины 7.

При поступлении электрического импульса в обмотку катушки 4 электромагнита возникает магнитное поле, которое притягивает сердечник 8 и вместе с ним иглу 2 запорного клапана. При этом отверстие в корпусе 9 открывается и топливо под давлением впрыскивается в распыленном виде во впускной коллектор.
После прекращения поступления электрического импульса в обмотку катушки электромагнита магнитное поле исчезает, и под действием пружины 7 сердечник 8 и игла 2 возвращаются в исходное положение. При этом отверстие в корпусе 9 закрывается, и впрыск топлива прекращается.

Топливный насос ( Рис. 5 ) приводится в действие от электродвигателя, который объединен с насосом в одном корпусе. Благодаря автономному приводу от электродвигателя производительность топливного насоса не зависит от частоты вращения коленчатого вала двигателя, и насос может работать даже при неработающем двигателе.

Центробежный роликовый топливный насос состоит из статора 3, внутренняя поверхность которого незначительно смещена относительно оси якоря 8 электродвигателя, цилиндрического сепаратора 16, соединенного с якорем электродвигателя, и роликов 17, расположенных в сепараторе. Сепаратор с роликами расположен между основанием 2 и крышкой 5 насоса.

При работе насоса топливо поступает через штуцер 1 и канал 18 к вращающемуся сепаратору 16, переносится роликами и через выходные каналы 6 подается в полость электродвигателя и далее через клапан 11 и штуцер 12 по топливопроводу к топливному фильтру.

Топливо, проходя в полости электродвигателя, охлаждает его.
Обратный клапан 11 предотвращает слив топлива из топливопровода и образование воздушных пробок после выключения насоса.
Предохранительный клапан 4 ограничивает давление топлива, создаваемое насосом (0,45…0,6 МПа).
Подача насоса – 130 л/час.

В настоящее время на отечественных автомобилях марок «ВАЗ», «ГАЗ», «Москвич» получила широкое распространение система распределенного впрыска «Мотроник», которая оснащена единым электронным блоком управления с системами питания и зажигания.
Для формирования управляющих сигналов система ЭБУ получает информацию от следующих датчиков:

  • датчик массового расхода воздуха (ДМРВ);
  • датчик положения дроссельной заслонки (ДПДЗ);
  • датчик температуры охлаждающей жидкости (ДТОЖ);
  • датчик детонации (ДД);
  • датчик кислорода (ДК);
  • датчик скорости автомобиля (ДСА);
  • датчик положения коленчатого вала (ДПКВ);
  • датчик фаз (ДФ).
Ссылка на основную публикацию